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Distribution of droplets in a turbulent spray
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A statistical description of droplets in turbulent spray, connected with the description of turbulent dissipa-
tion, is presented. The ideas of similarity, the cascade processes, and the infinitely divisible distributions are
used in this description. Formulas for characteristic droplet sizes and corresponding probability distributions
are obtained along with a simple formula for turbulent dissipation in flow near a ship.
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I. INTRODUCTION

Turbulent spray is an essential part of a beautiful sho
produced, particularly, by a moving ship. Apart from th
beauty, the ship spray has some additional properties: it
scures vision, in cold weather it leads to the icing of a sh
and it produces a characteristic radar and visual signatur
the shape of a ‘‘necklace.’’ Turbulent spray has many te
nical applications in combustion, painting, printing, etc.

The physics of turbulent spray is very complex. The pro
lem of turbulence itself is far from being ‘‘solved’’ in an
sense. The nonlinear boundary condition on the free sur
introduces an additional complexity, connected with the n
linear surface waves and their interaction with turbulen
On top of this we have the difficult problems of the drop
formation and separation. Direct numerical simulation of t
bulent spray is beyond the reach of current computer ca
bilities. However, numerical modeling of turbulent spr
with the use of the large-eddy simulation is in progress a
the results will be presented elsewhere. Here we will
scribe a much more simple statistical approach, which
complementary to the numerical simulations.

Kolmogorov @1# in cooperation with the experimenta
group of Baranaevet al. @2# ~see also a presentation of the
works in Levich @3#! introduced a similarity argument t
describe the characteristic size of droplets forming from
submerged jet of insoluble fluid in a turbulent flow of wate
We will extend this type of argument to include recent
sults on turbulence intermittency. We will also obtain t
probability distribution of the droplet sizes in turbule
spray.

II. DROPLET SIZES

Consider a well-developed turbulent flow near a water
interface. The major parameters for turbulent spray sh
and jets are the mean rate of the turbulent energy dissipa
in water ^«&, the kinematic coefficient of surface tensiong
5t/r ~t is the dynamical surface tension,r is the density of
water!, the kinematic coefficient of viscosity of watern, and
the external scale of turbulence in waterL. Additionally, we
have the ratio between densities of air and waterra /r, ki-
nematic viscosity of airna , and characteristics of turbulenc
561063-651X/97/56~5!/5479~4!/$10.00
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in air: mean air velocity relative to waterVa , mean rate of
turbulent energy dissipation̂«a&, and external scale of tur
bulenceLa . These additional parameters are important o
in situations with strong wind or strong air flow, because t
relative dynamical contribution of air to the spray formatio
roughly speaking, is proportional to the small parame
ra /r.

Neglecting the influence of the air flow, from a dime
sional argument we obtain the following expression for t
characteristic size of droplets in turbulent spray:

l * 5g3/5^«&22/5F~m,W!, ~1!

m5n5^«&g24, W5^«&2/3L5/3g21;v2Lg21. ~2!

Here F is a nondimensional function of nondimension
argumentsm ~molecular viscosity effect! and the global We-
ber numberW, v is the rms velocity fluctuation and in th
definition of W we used the Kolmogorov’s relationv
;^«&1/3L1/3. Parameterm is typically very small and param
eterW is large.

Consider the so-called inertial range of scales:l n

[n3/4^«&21/4! l * !L, wherel n is the Kolmogorov’s internal
scale. In this range, generally, we may expect that molec
viscosityn and the external scaleL are not important. In this
case, from Eq.~1! we get

l * ;g3/5^«&22/5. ~3!

This relation signifies the energy~or pressure! balance
between turbulence and surface tension for the droplet
mation. Indeed, Eq.~3! can be written in the form

^u2~r !&;^«&2/3r 2/3;gr 21, r 5 l * . ~4!

Hereu(r ) is the velocity increment for distancer , angu-
lar brackets denote the statistical averaging and we used
mogorov’s ‘‘2/3 law.’’ The termgr 21 represents the energ
~pressure! due to surface tension. The spectral analog of
~4! has the form

E~k!;^«&2/3k25/3;g, k5 l
*
21, ~5!

whereE(k) is the energy spectrum,k is the wave number.
5479 © 1997 The American Physical Society
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Relations~3!–~5! do not take into account the effects
intermittency. To consider these effects we can use the g
eralized Kolmogorov relationu(r );« r

1/3r 1/3, where« r is the
dissipation rate averaged over the distancer .

The balance equation~4! takes the form

^« r
2/3&r 2/3;gr 21, r 5 l * . ~6!

Now we use the scale similarity of the breakdown coe
cients « r /« l @4–6# and the corresponding formula for th
moment of orderp:

^~« r /« l !
p&5~ l /r !m~p!, r< l . ~7!

Herem(p) is the similarity exponent. With the usual a
sumption«L'^«&, from Eq. ~7! we have

^« r
p&'^«&p~L/r !m~p!. ~8!

Substitution of Eq.~8! with p52/3 into Eq.~6! gives

l * ;g3/5^«&22/5Wa, ~9!

a52
9m~2/3!

25215m~2/3!
, ~10!

where definition~2! for W was used. The same result follow
from the spectral balance~5!, if we use the corrected energ
spectrumE(k);«2/3k25/3(kL)m(2/3).

Thus, we get the intermittency correction for the char
teristic size of droplets along with the dependence on
global Weber number. The quantitym(2/3) is negative and
small. Indeed, from Eq.~8! we see thatm(0)50 ~normaliza-
tion of probability! andm(1)50 becausê« r&5^«& ~see de-
tails in @4–7#, connected with the nonhomogeneity of th
breakdown process!. It was shown@5# that functionm(p) is
concave. Thus,m(2/3),0. A general formula form(p),
which satisfies the realizability and all other necessary
sufficient conditions, was obtained@6#, based on the theory
of the infinitely divisible distributions@see below formula
~21!#. A particular case of this formula, which additional
satisfies the ‘‘no-gap’’ condition for the probability distribu
tion @6#, reads

m~p!5p2
~ps11!1/221

~s11!1/221
~ps>21!. ~11!

Experimental data fit very well this formula withs
50.9126 @8#. From Eqs.~11! and ~10! we havem(2/3)'
20.034 anda'0.012. For turbulent flow around a battlesh
we may haveW;106 and the intermittency correction~9!
gives about an 18% increase in the typical size of droplet
turbulent spray. The increase ofl * due to intermittency can
be understood qualitatively without detailed calculations.
the energy~pressure! balance~6! the term^« r

2/3& is smaller
than ^«&2/3, because in intermittent turbulent flow the are
with weak dissipation are larger than the areas with str
dissipation. Formula~8! with m(2/3),0 reflects this. Thus
l * is determined by a weaker than average dissipation
we need a biggerl * ~a bigger droplet volume! to resist sur-
face tension.
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Experimental data were recently obtained for turbule
spray in a jet around a rod@9#. If we present these data in th
form ~9!, then we geta'20.14. Previous consideration tel
us thatW dependence with sucha cannot be explained by
the intermittency effects. Our guess is that turbulent fl
around a rod in these experiments was not in Kolmogoro
similarity regime. Assuming that the energy spectrum has
form E(k);^«&2/3k25/3(kL)b, from the spectral balance~5!,
taking into account~2! and ~9!, we get

a52
9b

5~523b!
, b52

25a

3~325a!
. ~12!

If a520.14, then from Eq.~12! we have b'0.315,
which means a significant deviation from the classical sim
larity regime. It seems very important in future experimen
with turbulent spray to measure the energy spectrum of
bulence or equivalent structural function.

Returning to the ship spray, let us estimate the mean
of the energy dissipation in turbulent flow in front of a mo
ing ship. To begin with, imagine a vertical wall moving wit
speedV and creating turbulent waves. The characteristic
locity fluctuation of fluid will be of order ofV and charac-
teristic acceleration will be of order of the gravity acceler
tion g. By dimensional argument and by physic
consideration we can estimate^«&;Vg. A ship is not a ver-
tical wall and one of the goals of the ship design is to redu
turbulent dissipation. Introducing the corresponding fo
factor f « we have

^«&5Vg f« . ~13!

We did not find direct measurements of turbulent dissi
tion in bow waves, but by using Kolmogorov’s formul
^«&;v3L21 and data on wave measurements for differe
ship models@10#, we can roughly estimate thatf « is of order
of 0.1. This factor enters Eq.~9! in the power22/5, so
uncertainty in this factor is not very consequential. ForV
510 m/s andg570 cm3/s2 we get l * ;1 mm. At the same
time l n;0.1 mm, sol * is in the inertial range but not fa
from the viscous cutoff. Formula~13! can be used not only
for turbulent spray, but also for more general problems of
ship hydrodynamics.

III. PROBABILITY DISTRIBUTIONS

Now we turn to the probability distribution of drople
sizes, bearing in mind the close connection between dro
size and the energy dissipation, considered above. Par
larly, we refer to the energy~pressure! balance~6! and to the
increase of the characteristic droplet sizel * due to the inter-
mittency of the dissipation. It seems natural to assume
distribution of droplets can be described similarly to the d
tribution of energy dissipation, although the individu
breakdown coefficients may have different probability dist
butions. Let

l[ l N115 l 1b1b2•••bN , bk5 l k11 / l k<1. ~14!

Here l 1 is the size of a disintegrating blob of water,N is
the number of stages of disintegration,l is the final size of an
individual droplet. From Eq.~14! we have
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y[2 ln~ l / l 1!52 (
k51

N

ln bk . ~15!

If we assume that coefficientsbk are statistically indepen
dent ~or weakly dependent! and N is large, then bearing in
mind the limit theorem, we may expect that the probabil
density distribution of the variabley will be normal:

P~y!5
1

A2ps
exp$2~y2a!2/2s2%, ~16!

a5^y&, s25^~y2a!2&. ~17!

However, it was shown@4# ~in the context of the energy
dissipation! that this conclusion is incorrect. Mathematical
speaking, one has to be careful with the limit theorem: in
situation the properly normalized characteristic function
the probability distribution will tend to normal, but not th
probability density function. Physically speaking, Eq.~16!
contradicts the mass conservation. Indeed, simple calcula
of moments by using Eq.~16! gives

^~ l / l 1!n&5exp$2an1s2n2%. ~18!

For largen, Eq. ~18! exceeds unity, which contradicts th
inequality in Eq.~14!. It seems natural to assume that t
proper probability distribution of droplets belongs to t
family of the infinitely divisible distributions, suggested
@6#, which satisfy all necessary and sufficient conditio
Here we present one example of such a distribution:

P~y!5
a3/2

A2psy3/2
expH 2

a

2s2 ~ay21/22y1/2!2J , y>0,

~19!

wherea ands are defined by Eq.~17!. Moments of droplet
size, corresponding to distribution~19!, have the form

^~ l / l 1!n&5^e2ny&5exp$2a2s22@~2s2a21n11!1/221#%.
~20!

This formula is analogous to Eq.~11!, keeping in mind
that r« r /L«L is analogous tol / l 1 @see Ref.@6# and Problem
14, Chap. 13 in Ref.@11# for assistance in obtaining expre
sion ~20!, see also formula~27! below#.

More general distributions can be obtained from the f
lowing general formula@6#:

m~p!5kp2E
0

` 12e2px

x
F~dx!, k<1. ~21!

Herek is a constant,F is a measure on the open interv
~0,̀ ! such that (11x)21 is integrable with respect toF. An
r
f

on

.

-

analytical expression form(p) can be obtained when th
measure density has the following form:

F8~x!5(
i

AiG~a i !~x/si !
a i21 exp~2x/si !

1(
j

Bjxjd~x2xj !. ~22!

HereAi ,a i ,si ,Bj ,xj are, generally, positive constants@or
such that the whole expression~22! is non-negative for
x>0, see example@7# with A252A1 , s1.s2#, G is the
gamma function. Substitution of Eq.~22! onto Eq.~21! gives

m~p!5kp2(
i

AiF ~psi11!12a i21

12a i
G2(

j
Bj~12e2pxj !.

~23!

For a i51 the corresponding expression in square bra
ets in Eq.~23! should be replaced by ln(psi11).

Havingm(p), we can calculate the characteristic functio
for lnqr,l , where qr ,l5« r /« l is the breakdown coefficien
@see formula~7!#:

c~s,l /r !5^exp~ is lnqr ,l !&5~ l /r !m~ is!. ~24!

The probability density function forqr ,l is given by the
expression@6#

W~q,l /r !5
1

2pq E
2`

`

exp@2 is lnq1m~ is!ln~ l /r !#ds.

~25!

In the case of droplets, we can directly write express
for the characteristic function of the variabley, defined by
Eq. ~15! @6,11#:

x~s![^eisy&5expH ibs2E
0

` 12eisx

x
Q~dx!J , b>0.

~26!

Hereb is a constant,Q is a measure with the same pro
erties as measureF in Eq. ~21!, and we can use the sam
expression~22! for the measure density. The probability de
sity for y is given by the Fourier transform of Eq.~26!.
Particularly, if we use only one first term in Eq.~22! with
a150.5, we will get Eq.~19!. The moments for the drople
size distribution we obtain from~26!:

^~ l / l 1!n&5^e2ny&5x~ in !

5expH 2bn2E
0

` 12e2nx

x
Q~dx!J . ~27!
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IV. CONCLUSION

The presented formulas for the similarity exponents a
probability distributions describe both the intermitted dis
pation and droplets in turbulent spray. The transformat
from a statistical description of dissipation to droplets is
lustrated. These results can be used in experimental and
merical studies of turbulent spray. A simple formula~13! for
the turbulent dissipation for flow near a ship is proposed.
a,
d
-
n

u-

e

hope that this formula will stimulate direct measurements
turbulent dissipation for different ship models.
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