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Distribution of droplets in a turbulent spray
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A statistical description of droplets in turbulent spray, connected with the description of turbulent dissipa-
tion, is presented. The ideas of similarity, the cascade processes, and the infinitely divisible distributions are
used in this description. Formulas for characteristic droplet sizes and corresponding probability distributions
are obtained along with a simple formula for turbulent dissipation in flow near a ship.
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PACS numbds): 47.27—i

[. INTRODUCTION in air: mean air velocity relative to watéf,, mean rate of
turbulent energy dissipatiofe ,), and external scale of tur-
Turbulent spray is an essential part of a beautiful showpulencelL ;. These additional parameters are important only
produced, particularly, by a moving ship. Apart from the in situations with strong wind or strong air flow, because the
beauty, the ship spray has some additional properties: it obrelative dynamical contribution of air to the spray formation,
scures vision, in cold weather it leads to the icing of a shiproughly speaking, is proportional to the small parameter
and it produces a characteristic radar and visual signature in,/p.
the shape of a “necklace.” Turbulent spray has many tech- Neglecting the influence of the air flow, from a dimen-
nical applications in combustion, painting, printing, etc. sional argument we obtain the following expression for the
The physics of turbulent spray is very complex. The prob-characteristic size of droplets in turbulent spray:
lem of turbulence itself is far from being “solved” in any

sense. The nonlinear boundary condition on the free surface L =v*¥e) "D (m,W), (1)
introduces an additional complexity, connected with the non- . i o 5 1 2 1
linear surface waves and their interaction with turbulence. m=v>(e)y ", W=(e)"L>°y "~vly . (2

On top of this we have the difficult problems of the droplet ) ) ) _ ) ]

formation and separation. Direct numerical simulation of tur- Here® is a nondimensional function of nondimensional

bulent spray is beyond the reach of current computer capafgumentsn (molecular viscosity effegtand the global We-

bilities. However, numerical modeling of turbulent spray Per numbeW, v is the rms velocity fluctuation and in the

with the use of the large-eddy simulation is in progress andlefinition of W we used the Kolmogorov's relation

the results will be presented elsewhere. Here we will de=(&)"*L"*. Parametem is typically very small and param-

scribe a much more simple statistical approach, which igterW is large. o

complementary to the numerical simulations. Consider the so-called inertial range of scalds:
Kolmogorov [1] in cooperation with the experimental =v>e)”"*<l, <L, wherel , is the Kolmogorov's internal

group of Baranaeet al.[2] (see also a presentation of these scale. In this range, generally, we may expect that molecular

works in Levich[3]) introduced a similarity argument to Viscosityr and the external scale are not important. In this

describe the characteristic size of droplets forming from &ase, from Eq(1) we get

submerged jet of insoluble fluid in a turbulent flow of water. 35, \ o5

We will extend this type of argument to include recent re- Lo~ y"Xe)™ ™ ©)

sults on turbulence intermittency. We will also obtain the

probability distribution of the droplet sizes in turbulent

spray.

This relation signifies the energior pressure balance
between turbulence and surface tension for the droplet for-
mation. Indeed, Eq3) can be written in the form

Il. DROPLET SIZES (U2(r))~(e)2Z 2B~ yr=1 r=I,. (4)

Consider a well-developed turbulent flow near a water-air  Hereu(r) is the velocity increment for distanee angu-
interface. The major parameters for turbulent spray sheetgr brackets denote the statistical averaging and we used Kol-
and jets are the mean rate of the turbulent energy dissipatiamogorov's “2/3 law.” The termyr ~* represents the energy
in water (e), the kinematic coefficient of surface tensign  (pressurgdue to surface tension. The spectral analog of Eq.
=1/p (7is the dynamical surface tensignjs the density of  (4) has the form
waten, the kinematic coefficient of viscosity of water and
the external scale of turbulence in waterAdditionally, we E(k) ~(e)?k 5~y k=11, (5)
have the ratio between densities of air and watetp, ki-
nematic viscosity of aiv,, and characteristics of turbulence whereE(Kk) is the energy spectrunk, is the wave number.
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Relations(3)—(5) do not take into account the effects of  Experimental data were recently obtained for turbulent
intermittency. To consider these effects we can use the gerspray in a jet around a rd@]. If we present these data in the

eralized Kolmogorov relatiou(r)~s,1’3r 13 whereg, is the  form (9), then we getx~ —0.14. Previous consideration tells
dissipation rate averaged over the distance us thatW dependence with such cannot be explained by
The balance equatiof#) takes the form the intermittency effects. Our guess is that turbulent flow
around a rod in these experiments was not in Kolmogorov’s
(e~ yr=1 r=I,. (6)  similarity regime. Assuming that the energy spectrum has the

form E(k) ~ ()% ~53(kL)#, from the spectral baland),
Now we use the scale similarity of the breakdown coeffi-taking into account2) and(9), we get
cientse, /g [4-6] and the corresponding formula for the
: 9 25a
moment of ordeip: y— B  pe- ' 12
5(5—38) 3(3—5a)
((e le)Py=(Ir)* P r<]. (7)
_ S _ If «=-—0.14, then from Eq.(12) we have 8~0.315,
Here u(p) is the similarity exponent. With the usual as- which means a significant deviation from the classical simi-

sumptione, ~{&), from Eq.(7) we have larity regime. It seems very important in future experiments
with turbulent spray to measure the energy spectrum of tur-
(eP)=(&)P(LIr)HP), (8  bulence or equivalent structural function.
Returning to the ship spray, let us estimate the mean rate
Substitution of Eq(8) with p=2/3 into Eq.(6) gives of the energy dissipation in turbulent flow in front of a mov-
305/ \ — 25 nror ing ship. To begin with, imagine a vertical wall moving with
e~ y¥e) W, © speedV and creating turbulent waves. The characteristic ve-

locity fluctuation of fluid will be of order ofv and charac-
w23 (10  teristic acceleration will be of order of the gravity accelera-
25— 15u(2/3)° tion g. By dimensional argument and by physical
consideration we can estimate)~Vg. A ship is not a ver-
where definition2) for W was used. The same result follows tical wall and one of the goals of the ship design is to reduce
from the spectral baland®), if we use the corrected energy turbulent dissipation. Introducing the corresponding form

a=

spectrume (k) ~ &% 3(kL)#(23), factor f, we have

Thus, we get the intermittency correction for the charac-
teristic size of droplets along with the dependence on the (e)=Vgf,. (13
global Weber number. The quantigy(2/3) is negative and _ ] _ o
small. Indeed, from Eq8) we see thag(0)=0 (normaliza- We did not find direct measurements of turbulent dissipa-

tion of probability andx(1)=0 becausée,)=(e) (see de- tion |n3 b9\l/v waves, but by using Kolmogorov's fo_rmula
tails in [4—7], connected with the nonhomogeneity of the<8?”U L~* and data on wave measurements for different
breakdown procegslt was showr{5] that functionu(p) is  Ship model§10], we can roughly estimate thé is of order
concave. Thusu(2/3)<0. A general formula foru(p), of 0.1. _Th|s_ fact_or enters Eq9) in the power—2_/5, SO
which satisfies the realizability and all other necessary angncertainty in this factor is not very consequential. Kor
sufficient conditions, was obtaind6], based on the theory =10 m/s andy=70 cn¥/s” we getl, ~1 mm. At the same

of the infinitely divisible distributionysee below formula timel,~0.1mm, sol, is in the inertial range but not far
(21)]. A particular case of this formula, which additionally from the viscous cutoff. Formulél3) can be used not only
satisfies the “no-gap” condition for the probability distribu- for turbulent spray, but also for more general problems of the

tion [6], reads ship hydrodynamics.
(ps+1)¥2-1 Ill. PROBABILITY DISTRIBUTIONS
M(D)ZD—W (ps=—-1). (11

Now we turn to the probability distribution of droplet
sizes, bearing in mind the close connection between droplet
size and the energy dissipation, considered above. Particu-

. larly, we refer to the energfpressurgbalanceg6) and to the
—0.034 andx~0.012. For turbulent flow around a battleship increase of the characteristic droplet sizedue to the inter-

we may havew~10P and the intermittency correctiof9) _mittency of the dissipation. It seems natural to assume that

gives about an 18% increase in the typical size of droplets igjisyripution of droplets can be described similarly to the dis-
turbulent spray. The increase lgf due to intermittency can ipution of energy dissipation, although the individual

be understood qualitatively without detailed calculations. INgeakdown coefficients may have different probability distri-
the energy(pressurg balance(6) the term(e?% is smaller  putions. Let

than ()% because in intermittent turbulent flow the areas

with weak dissipation are larger than the areas with strong I=lyy1=11b1bs---by, b=l /=1, (14
dissipation. Formuld8) with w(2/3)<0 reflects this. Thus,

I, is determined by a weaker than average dissipation and Herel, is the size of a disintegrating blob of waté¥,is
we need a biggelr, (a bigger droplet volumeto resist sur-  the number of stages of disintegratidris the final size of an
face tension. individual droplet. From Eq(14) we have

Experimental data fit very well this formula witls
=0.9126[8]. From Egs.(11) and (10) we haveu(2/3)~
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N analytical expression fou(p) can be obtained when the
=—In(l/1})=— E In by. (15 measure density has the following form:
k=1
If we assume that coefficienks are statistically indepen- F'(x)=2 ATl (e;)(x/s)% L exp(—x/s;)
i

dent (or weakly dependeptandN is large, then bearing in

mind the limit theorem, we may expect that the probability

density distribution of the variable will be normal: +> BjX; 8(X—X;). (22)
]

HereA,q;,s;,B; x; are, generally, positive constarts
1 such that the whole expressid22) is non-negative for

P(y)= N exp{ — (y—a)%/20%}, (16)  x=0, see examplé7] with A,=—A;, s;>s,], I' is the
2mo gamma function. Substitution of E(22) onto Eq.(21) gives

a=(y), o?={((y—a)?). 1 e
<y> g <(y ) > ( 7) (p):Kp_z A{M}_E B-(l_e_pxj)
However, it was show4] (in the context of the energy H T 1-a; . '
dissipation that this conclusion is incorrect. Mathematically (23

speaking, one has to be careful with the limit theorem: in our
situation the properly normalized characteristic function of For a;=1 the corresponding expression in square brack-
the probability distribution will tend to normal, but not the ets in Eq.(23) should be replaced by Ip§+1).

probability density function. Physically speaking, H46) Having «(p), we can calculate the characteristic function
contradicts the mass conservation. Indeed, simple calculatiofor Ing,;, whereq, =&,/¢ is the breakdown coefficient
of moments by using Eq16) gives [see formula7)]:
((11)"=exp{—an+ a?n?}, (18
P(s,1/r)=(expis Ing, ;))=(1/r)»1%), (24)

For largen, Eq. (18) exceeds unity, which contradicts the
inequality in Eq.(14). It seems natural to assume that the . ) ) o
proper probability distribution of droplets belongs to the 1he probability density function fog, is given by the
family of the infinitely divisible distributions, suggested in €xPressiori6]

[6], which satisfy all necessary and sufficient conditions.
Here we present one example of such a distribution:

W(q,1/r)= % f_: exd —is Ing+ u(is)In(1/r)]ds.

a3 a 25
P(y)=—3,2e><p{——2(ay1’2—yl’2)2 . y=0, =
V2may 20 . . .
(19) In the case of droplets, we can directly write expression

for the characteristic function of the variabje defined by
wherea and o are defined by Eq(17). Moments of droplet Eq. (15) [6,11]:
size, corresponding to distributiqd9), have the form

© _ plSX
()M =(e"™y=exp{—a’c [ (20%a n+1)2—1]}. X(S)E(e‘5y>=exp{ ibs— fo Q(dx)], b=0.
(20 (26)

This formula is analogous to Eq11), keeping in mind
thatre,/Le_ is analogous td/l; [see Ref[6] and Problem Hereb is a constantQ) is a measure with the same prop-
14, Chap. 13 in Ref{11] for assistance in obtaining expres- erties as measurge in Eqg. (21), and we can use the same
sion (20), see also formul#27) below]. expression(22) for the measure density. The probability den-

More general distributions can be obtained from the fol-sity for y is given by the Fourier transform of E¢26).
lowing general formuld6]: Particularly, if we use only one first term in ER2) with

a1=0.5, we will get Eq.(19). The moments for the droplet
size distribution we obtain fron26):

l—e*PXF g -1 21
. (dx), x<1l. (21 ()M =(e™™)= x(in)

Here k is a constantF is a measure on the open interval —exp —bn— Jm 1-e ™ Qudx) . (@7
(0,%) such that (#x) ! is integrable with respect 6. An

u(p>=xp—f:
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IV. CONCLUSION hope that this formula will stimulate direct measurements of
turbulent dissipation for different ship models.
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